The FavaBeans Programmer's Guide
by lhab Awad

The FavaBeans Programmer's Guide
by Ihab Awad
Copyright © 2000-2001 Regents of the University of Minnesota

"FavaBeans' and the "beansin a pod" device are trademarks of the Regents of the University of Minnesota. All other trademarks are the property
of their respective owners.

Table of Contents

Introduction

Object-Oriented

Facilities
Model
High-Level

Introduction
Interface
Unresolved

Introduction
Class
Subclasses
Associating
Object
Creating
Summary

Introduction
Interface
The

Scope and

User Interfaces
Provided by
and View Objects in
Architecture of the
Views

View
Issues
The Type System
Type
of class
Objects with Values: The
Facets
Facets: Faceted and the
The Standard

Feature

Properties Facet

Approach

Facets

FavaBeans

FavaBeans

Framework

Type
TypeM etadataRegistry

FacetRegistry

The Actions
The Change
The Prototype
The ViewPrototypes
Drag and
The Folder and
Default Facet
Facets of
Summary

Bibliography

Column
Implementations
Views

Facet
Facet

Facet

Facet

Drop

Facets

aaDd NRRPRRPR

POO~NNOO

List of Figures

11
21
31
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Fundamental components
Interface
Class
The Properties
The Acti ons
The Change
The Pr ot ot ype
The Vi ewPr ot ot ypes
The Drag and Drop

The Fol der and

of FavaBeans.
Vi ew.
Type.
Facet .
Facet .
Facet .
Facet .
Facet .
(DnD) Facets.
Col um Facet s.

11
13
13
14
15
17
17

Chapter 1. Scope and Approach

Chapter 1. Scope and Approach

Introduction

In this chapter, we describe what FavaBeansis and the scope of the problems we are attempting to ad-
dress by building it.

Object-Oriented User Interfaces

FavaBeans is aframework to help you build an object-oriented user interface (ooui) into your application
using Java Swing. An ooui is a user interface (ui) presenting an end-user model of "objects’ which can
carry out certain behaviors and can be directly manipulated by their "views".

The arguments in favor of using an ooui are given in Collins95, and we highly recommend this book to
you as a companion to your use of FavaBeans. Further information about oouisis available from
Berry98.

Facilities Provided by FavaBeans

ooui implementations often make heavy use of drag and drop (dnd) interactors; FavaBeans supports this
by presenting a simplified api that speeds up the process of adding dnd to your application, while still al-
lowing you full access to the underlying Java Swing dnd api should you choose or need to useiit.

FavaBeans comes bundled with arich set of views for browsing collections, analogous to the "icon",
"list" and "details" views commonly found in a modern operating system file browser ui. However, the
FavaBeans collection views are not limited to file browsing, but are available to any part of your appli-
cation. Thisfact dramatically improves the consistency of the your application's ui, and should help
speed up your development.

FavaBeans includes a system "registry" which allows you to add specific views and other arbitrary ui
functionality for your application objects. However, in the absence of specific knowledge about your ob-
jects, FavaBeans will use standard Java Beans introspection to build up simple, generic Bean property
sheets and collection views. While these may not be suitable for distribution to your end-users, they are
an important development aid, allowing you to concentrate on your application logic while your ui is
still under development, and to develop your ui elements incrementally, using the generic views for tem-
porary navigation through your application objects if need be.

Model and View Objects in FavaBeans

FavaBeans is based on the "Model, View, Controller" design paradigm as introduced in Smalltalk
(Goldberg89 and Krasner88). However, we differ from the Smalltalk pattern in choosing to include the
functionality of a Controller object in the View. This practice is well-established by Collins95, and its
use in Java Swing is documented in Fowler00.

Callins95 suggests a nomenclature whereby the combined View/Controller object is referred to asa

delegate, thereby calling the modified design pattern the "Model, Delegate" approach. We do not adopt
this naming scheme; instead, we describe Model and View objects with the assumption that the View

1

Chapter 1. Scope and Approach

objects take on the role of a Controller aswell.

High-Level Architecture of the Framework

The basic components of FavaBeans are shown in Figure 1.1.

Figure 1.1. Fundamental components of FavaBeans.

Views adapt the domain object to the
end-user, providing visual elements
they can manipulate. t-l

aFavaBeansComonent
:0bject

Facets and Features adapt the domain
object to other FavaBeans components,
which may themselves be Views, Facsts
or Features.

FavaBeans uses Types to choose the correct
Views, Facets and Features for a domain
object. The Type of a domain object may just
be its Java class, or something else like the

XML DTD of a document.

We will describe these components in more detail in the ensuing chapters but, briefly:

A domain object (i.e., some part of the application, like an Enpl oyee or a
TechSupport Cal | Log), isrequired to know nothing about FavaBeans.

A Vi ewisthe fundamental visible Ul component in FavaBeans. Each Vi ew visually represents at
most one domain aobject; on the other hand, a domain object may be represented by many Vi ews.

Various portions of the FavaBeans framework create Facet s and Feat ur es; these act as adapters,

presenting the capabilities of the domain object in auniform way to other components in FavaBeans.
Each domain object may have many Facet sand Feat ur es.

2

Chapter 1. Scope and Approach

Programmers use FavaBeans via the following techniques, listed in ascending order of tight integra-

tion with the framework and need to know the details of the framework interfaces:

e Adding information to the TypeMet adat aRegi st r y accessible from class FavaBeans.

« Creating new Facet and Feat ur e implementations, or extending existing ones, which adapt do-
main objects to the standard elements of the framework, including standard Vi ews (such as "icon
views" of collections and "property sheets"); and --

« Building new, application-specific Vi ew implementations.

The FavaBeans framework associates a domain object with the correct Vi ews, Facet sand

Feat ur es based on the Types that match the domain object. Ty pes can be extended to implement

various criteriafor organizing domain objects, such as:

e TheJavaclass of the domain object, such asmyapp. dat anodel . TechSupport Cal | Log.

» Elements of the Java class of the domain object, such as the fact that it publishes the
Pr oper t yChangePpr oper t yChange event set.

* Other criteria, such asthe XML DTD of the document represented by the domain object.

A domain object may match more than one Type. The only restriction we impose is that the Types
of adomain object may not change at run-time.

Chapter 2. Views

Chapter 2. Views

Introduction

FavaBeans exists to support and facilitate views -- i.e., visual Ul components -- which display the infor-
mation in domain objects. In this chapter, we discuss the minimal requirements for avalid FavaBeans
view.

Interface View

A Vi ewisthe fundamental component which displays some object. The actual interfaceis [perhaps
somewhat deceptively] simple (Figure 2.1). In addition, we require that a compliant FavaBeans Vi ew
implementation be a subclass of Conponent , thereby allowing it to be embedded in other Ul elements.

I mportant

We may consider relaxing the requirement that a Vi ew be a subclass of Conponent ; thiswould
support frameworks where a view element is part of an abstract "scene graph" and not a di-
rectly paintable AWT/Swing component. We got thisideafrom Jazz
[http://www.cs.umd.edu/hcil/jazz/], which we will probably be using as an additional "look and
feel" for FavaBeans in the future.

Figure 2.1. Interface vi ew.

interface 01~ i
Taw P — java.lang.Object
model '

s Modeffettztie boofean

+readel vois

+foetiiodel Offect

L 2IFPropernyhAang sl is renarvaid
£rEMaVERro rariyiC AR 8L f5 tenar v ofd
L 2IFPropernyhAang sl is renarvaid
£rEMaVERro rariyiC AR 8L f5 tenar v ofd

The Vi ew. Model Mrodel property of aVi ew permits a FavaBeans implementation to use a configured
Vi ew repeatedly for viewing multiple objects.

http://www.cs.umd.edu/hcil/jazz/

Chapter 2. Views

Unresolved Issues

How will aVi ewinteract (if at all) withj ava. beans. beancont ext stuff?

How will acomposite Vi ew make this fact known? Through its Fol der Facet ? How does that relate to
the composition inherent in Cont ai ner and BeanCont ext ?

Chapter 3. The Type System

Chapter 3. The Type System

Introduction

In this chapter, we describe the fundamental system of data "types' that underlies the categorization and
display of objectsin arunning instance of FavaBeans.

Class Type

A Type object isan analogue of a Java class; it allows us to categorize objects, but provides for more
fine-grained control over this categorization than would be possible were we to categorize objects based
on their Java class alone. See Figure 3.1 for more details; the additional classes shown in thisclassdia-
gram are discussed below.

Figure 3.1. Class Type.

interface
Javaip.yerializable

interface
o favabeans.util PocComparable

java.lang. Object

JSAVa fo Externaiizzaie

JAava iang Cioneahie
java.awt.datatransfer.DataFlavar

I

I

I

I

*orazterThan boofean |
+iess Than boolean I
o E fanfean :
I

I

I

I

+getMimeType:String

+i5 SR RS B e O Bonfaan
+isAssignableFrom:boolean
5 fns tance boafean
+areaterThan:boaolean
+lessThan:boolean
+equals:boaolean
+equals:-bhoalean

+oetType:Type

Class Type implements PoConpar abl e, allowing usto useit in partially ordered data structures.

6

Chapter 3. The Type System

We have made the simplifying design decision that the Type of an object does not change at run-time.
Without this simplification, the state machine for the objectsin our framework would be complicated by
having to handle "type changed" events.

I mportant
We may relax the requirement that the Type of an object not change at run-time later on.

Notably absent from the contract of class Type isany notion of uniqueness of the of the Type of agiven
object. On the other hand, any subsystem responsible for returning the Type of an object can and should
return at least the appropriate JavaType (see below); effectively, thisis a guarantee that there exists a
minimum of one Type for any Qbj ect .

A developer could, if they so wished, define subclasses of Type which recognize information that is not
necessarily representable by an Qbj ect ; the most obvious example would be a Type associated with a
Java primitive datatype such asi nt eger . We neither recommend nor discourage this approach, but
we note that such a Type may not be very useful, asit would be unable to recognize instances of itself
viathe Type. i sl nst ance(Obj ect) method.

Subclasses of class Type

The FavaBeans framework includes two pre-defined subclasses of Type; both are depicted in Figure 3.1.

Class JavaType isasimple extension of Type which describes a single Java class or interface. Accord-
ingly, it is constructed with one Gl ass argument.

A Dat aSour ceType represents a type of MIME-typed data stream. It is a bridge to the type system de-
fined by the Java Activation Framework (JAF), and especially to class Dat aSour ce. As such, given:

String mnetype = "text/htm"; // for exanple . . .
Type[] supers = new Dat aSour ceType(m neType). get Supertypes();

the following is aways true:

(supers.length == 1) &&
super s[0] . equal s(new JavaType(j avax. acti vati on. Dat aSource));

Associating Objects with Values: The TypeMetadataRegistry

A TypeMet adat aRegi st ry assigns an object to a value via the best matching Type of the object. It is
one of the main ways whereby FavaBeans requires no intrusion into the domain object model: we can
bind all the view-related information that we might need to domain objects solely by defining the appro-
priate Types and adding information to TypeMet adat aRegi st rysinthe Ul.

Asapractical and simple example, let's assume that we have the following classes:

Class Person { /* ... */ }
cl ass Enpl oyee extends Person { /* ... */ }
cl ass Doctor extends Enployee { /* ... */ }

Chapter 3. The Type System

and we choose someicons to be used for representing instances of some of these classes, and add them
to some centrally available TypeMet adat aRegi st ry:

I con personlcon = /* ... */;

I con enployeelcon = /* ... */;

TypeMet adat aRegi stry tnmr = /* ... */;

tnr. put (new JavaType(Person. cl ass), "icon", personlcon);
tnr. put (new JavaType(Enpl oyee. cl ass), "icon", enployeelcon);

A Ul element could then use this TypeMet adat aRegi st ry to display the icons for a number of objects:

TypeMet adat aRegi stry tnmr = /* ... */;

Person[] people = new Person[] {
new Person("Pat Ckoye"),
new Enpl oyee("Joy Al bright"),
new Doct or (" Peace Freeman"),

b

for (int i =0; i < people.length; i++) {
Icon thelcon = (lcon)tnr. get For Obj ect (people[i], "icon");
/* display the object using 'thelcon' */

}

and, in thisway, use our preferred icons for the Per son and Enpl oyee objects. Furthermore, the Ul
element would automatically represent the Doct or object via the best matching icon which, in our ex-
ample, happens to be that which we associated with class Enpl oyee.

Object Facets

A Facet isan object which provides an alternative representation of another object. Examples of a
Facet could be:
* An object that represents an XML filein afilesystem as a parse tree of XML node objects.

» A "persistence" facet of an object, to which the responsibilities for making the object persistent in
some storage medium are delegated.

e An object which represents an Enpl oyee object, from the domain model of some application, asa
Dr awabl e with the capability to be drawn on aCanvas.

The FavaBeans Facet objects owe their lineage in part to the following previous work:

» The GoF Decorator design pattern (Gamma95).
» TheFacet interfacein ObjectSpace Voyager (ObjectSpaceV oyager).

* Thedefinition of "interfaces" by delegation, as used in Microsoft's [D]JCOM (MicrosoftCOM).

Chapter 3. The Type System

Creating Facets: Faceted and the FacetRegistry

An object implements Facet ed in order to be tightly integrated into the Facet system. An object re-
turnsaFacet of itself of arequested Type viaitsFacet ed. get Facet (Type) method. Any lifecycle
management of Facet s isthe responsibility of the Facet ed object.

More typically -- and more powerfully -- we can create aFacet for an object that is not aware of the
Facet system; we do thiswith the help of aFacet Regi st ry. Some "startup" component initializes a
Facet Regi stry (typically that available via class FavaBeans) with information about the Types of
objects for which Facet s may be created, and some Facet Fact or y objectsto which the

Facet Regi st ry may delegate the responsibility for actually constructing Facet s. A Facet Regi stry
isresponsible for maintaining alist of already constructed Facet sfor an object.

A typical interaction with aFacet Regi st ry starts by adding some Facet Fact or y objects. Given:

interface WebAccessible { /* ... */
interface Htm Accessi bl e extends WebAccessible { /* ... */ }
interface Vehicle { /* ... */ }

Vehi cl e theVehicle; /* assum ng al ready exists */
Facet Factory facO, facl; /* assum ng these already exist */

Facet Regi stry theFacets =/* ... */;

We could add:

t heFacet s. addFact or y(new JavaType(Vehi cl e. cl ass),
new JavaType(WebAccessi bl e. cl ass),
facO);

t heFacet s. addFact or y(new JavaType(Vehi cl e. cl ass),

new JavaType(Ht m Accessi bl e. cl ass),
facl);

We could then use the Facet Regi st ry to obtain an Ht ml Accessi bl e Facet of theVehi cl e ob-
ject:
Ht m Accessi ble hO = (Htnl Accessi bl e)

t heFacet s. get Facet (t heVehi cl e, new JavaType(Ht ml Accessi bl e. cl ass));

The Facet Regi st ry would cache thisFacet so that:

t heFacet s. get Facet (t heVehi cl e, new JavaType(Ht m Accessi bl e. cl ass)) == ho;
and would return the same Facet for compatible supertypes of that for which it was originally con-
structed:

t heFacet s. get Facet (t heVehi cl e, new JavaType(WbAccessi bl e.class)) == hO;

until the Facet Regi stry. cl ear Facet s(Obj ect) method is called:

Chapter 3. The Type System

t heFacet s. cl ear Facet s(t heVehi cl e);

after which Facet sfor this object are created anew:

Ht m Accessi ble hl = (Htm Accessi bl e)
t heFacet s. get Facet (t heVehi cl e, new JavaType(Ht m Accessi bl e. cl ass));
hl != ho;

I mportant

We need to address lifecycleissues for Facet objects. Thiswill apply to all things like views,
etc., and will be generally useful. Thisisall complicated by the messy strong references in Java
AWT and Swing for event listeners, which may prevent some components from getting garbage
collected correctly. Thiswill need to be addressed at some point.

Summary

Type objects are the analogue of Java classes and behave similarly to O ass objects. FavaBeans pro-
vides class TypeMet adat aRegi st ry for binding arbitrary information to instances of a Type.

Facet s are an aternative representation of another object, which we refer to as the primary object of the
Facet . FavaBeans provides class Facet Regi st ry whereby Facet s can be constructed for a primary
object based on the Types of the primary object and the desired Facet . The work of actually construct-
ing aFacet isdelegated to aFacet Factory.

10

Chapter 4. The Standard Facets

Chapter 4. The Standard Facets

Introduction
In this chapter, we list the standard sub-interfaces of Facet which a FavaBeans implementation should
provide. These are the fundamental manner in which domain objects, developed independently of Fav-

aBeans, are integrated into the framework and given the standard behaviors that elements of the frame-
work are expected to have.

Interface Feature

Before we say any more about Facet s, we should first introduce another interface: Feat ure. A

Feat ur e hasatarget (see Feat ur e. Tar get Tt ar get) some information about which it provides;
there is not, however, necessarily a unique Feat ur e of agiven Feat ur e for agiven object. This dis-
tinctino will become clearer as we present examples of actual usage.

The Properties Facet
TheProperti es of an object (Figure 4.1) provides the basic functionality to display the primary object
inthe UI.

Figure4.1. TheProperties Facet.

11

Chapter 4. The Standard Facets

interface
Facet

1 interface

1 [java.lang.Object

FHEEFrmanyGifec b Ohiect

primaryChject |

Feature

'] target

FoetTarget Qfpecr

interface
Fropertis

interface
Froperiy

FoeriVame Srring

g 8 X0 pfEyNEm e Srring

5 Expert boafean

5 Hidden Baafean

s Preferred Booafean

FRERSAn s CA PR SRS
FHEXSMEiicon. favax. s wing. fcon

TR e on BVEX. S wing foorn

Fae NI e Preperty. Property

5 8 XS A Ey NS 8 Pro perty. Fro perty
FREFEX PErIFro perty. Froperly

S E M AT e R frn pe iy Prope rty
FoErPraferradfra party. Froparty
FHELSRG e s Cr R Property. Fro perty
L ErEmEiconProperty. Froperty

FHE S eiC R Preperty. Propertly

G e AT I eI Froperiies Froperiy iy
FEFICropertyChEng el fs renar vofd
FrEMEVELr mer iy han g gL Fr tenarvafd
FRIFEroparfyChIng el fr ranar vofs
FrEMCVEFra LertyChang el fs renervofd

FaetiVame Shing

FoetlEineCias s Cfgs s

FirEnabfed hoolean

FREWEFF e Property Editor

FoetVaine: Object

i VRirasattabie hoolfezn

5 VEinefertabie faofean

Fratlaire vaid

FRIITEroparfyChIng el fr ranarofd
FrEMCVEFrepertyChang el is tenervofid
F3FXPropertyChang el i tenarvoid
FrEMOVErreperiyChang el is tenervoid

Parts of Properti es arevery similar in purpose -- and, therefore, deliberatey similar in syntax -- to a
Feat ur eDescri pt or . Specifically the "standard properties' are the information obtained by methods
such asProperties. Di spl ayNaneDdi spl ayName and Properties. Smal | | conSsmal | | conisin-
tended for Ul elements to be able to display a minimal iconic representation of the primary object.

The standard properties are also obtainable as full-fledged Pr oper t y objects. A Property isathat en-
capsulates some sort of information about its target. Methods to obtain these are, for example,
Properties. Di spl ayNanePr opert yDdi spl ayNamePr operty and

Properties. Smal | | conPropertySsnal | | conProperty.

Finally, zero or more additional Pr opert 'y objects, built depending on the application at hand, are avail-
ableviathe Properti es. Addi ti onal Properti esAaddi ti onal Properties method.

Chapter 4. The Standard Facets

I mportant

The number of additional propertiesis allowed to change at run-time; views that depend on this
fact are expected to listen for Pr oper t yChangePpr oper t yChange events, with akey of
additional Properties, from the Pr oper t i es object they are using.

The Actions Facet

AnActions Facet (Figure4.2) providesalist of Acti onFeat ur e objects representing commands
that the end-user may execute its primary object. These may be plaed in a menu or on atoolbar, or other-
wise presented, at the discretion of relevant Ul elements.

Figure4.2. The Acti ons Facet.

interface

interface Feature
Facer 1 1
. java.lang.Object o java.awt. event Actionlistener
primary Object 1] target interface

foetTarget Ohfect Javax.swing.Action

+getfrimaryGhjectObject

interface interface

Actions Actionfeatirs
o.*

[

actions

Fg et e ActionFeaturaf]
+@ddPropertyChangel is tenervoid
FremoverropertyChangal is renervoid
FEFFPropertyChangel is tenervoid
FremoaverropertyChangel is tenervoid

The Change Facet

The Change Facet of an object (Figure 4.3) publishes the ChangeCchange Bean event set and fires an
event whenever the primary object has changed in a manner that will affect observers.

Figure 4.3. The change Facet .

13

Chapter 4. The Standard Facets

1 interface

java.lang.Object Facel

! primar‘thject{}

*FaePmanyCafec e Caece

1

interface
Change

+EAFThang sl fr tenar o fd
+remorehang el i tener vaid
+aafyChang el i tenars vafd

+ie A rematfc iy ipdaiing bnofean

Other objects (including other Facet s of the primary object) may utilize the Change Facet asaway to
isolate themselves from the details whereby an object indicates a state change.

The Change interface is designed to accommodate -- and shield other components from the distinctions
between -- cases where the primary object informs clients of changesto itself and cases where the end-
user must manually trigger an "update” of al views. The

Change. Aut onati cal | yUpdat i ngAaut omat i cal | yUpdat i ng property indicates whether the asso-
ciated Change Facet islistening for events from its primary object. If this property ist r ue, then calls
toitsChange. fi r eChange() method should be no-ops. However, if this property isf al se, each call
to Change. fi reChange() will force the broadcast of aChangeEvent .

The Prototype Facet

The Pr ot ot ype Facet of an object (Figure 4.4) representsits capability to cloneitself. Thisis an oper-
ation that isinvokeable by the end-user, and isintended to be a higher-level construct than that provided
by Qbj ect . ¢l one() (but with similar semantics).

Figure4.4. The prot ot ype Facet .

14

Chapter 4. The Standard Facets

interface
fFarer

1
primaryChject

java.lang.Object

APy Gafer e afect

il

interface
Frofofype

FoionefrimanyCafec e G afect

The ViewPrototypes Facet
Each object hasa Vi ewPr ot ot ypes Facet (Figure 4.5) which presents a set of prototypical Vi ew ob-
jects.

Figure 4.5. The vi ewpr ot ot ypes Facet .

15

Chapter 4. The Standard Facets

interface
facer ! [java.lang.Object
primaryOhject H
0.1 | model
Lo terimRanyCaect Oafect
interface interface
TewFroronypes Vew
o.®
-
LR tfre fety e s ew T +i5 Moedelfertafie fonlean
+retodel void

+oetModel Ohfect
+EATProparnyChangal ix teparvoid
FrEMaVERro ey CAZRaal i repar i ofid
+EATFra e hane el i feRer v aid
FrEMEVERraperfyCRaEns el i fener vaid

Given the settting:
oj ect enployee = /* ... */;
Facet Regi stry fr =/* ... */;

the canonical manner in which anew Vi ew may be created is:

/1 Get the ViewPrototypes Facet of the domain object

Vi ewPr ot ot ypes fvs = (Vi ewPr ot ot ypes)
fr.get Facet (enpl oyee, new JavaType(Vi ewProt ot ypes. cl ass));

/1 Choose one of the Views avail able
Vi ew soneProtoVi ew = fvs. getViewPrototypes()[0]; // say

/1l Get the Prototype Facet of the chosen View, and create
/1 a new View using its methods

Prototype s = (Prototype)
fr.get Facet (sonmeProt oVi ew, new JavaType(Prototype. class));
Vi ew newi ew = (View)s. cl onePrimaryQbject();

/1 Tell the newy created Viewto display the original
/1 domai n obj ect

newVi ew. set Model (enpl oyee) ;

16

Chapter 4. The Standard Facets

Drag and Drop

There exist two Facet s, shown in Figure 4.6, which support Drag and Drop (DnD). They simplify the
work of developers by shielding them from the complexities of the standard Java DnD code

(j ava. awt . dnd) while still allowing them to expose DnD functionality to Ul elementsthat are
DnD-capable.

Figure 4.6. The Drag and Drop (pnD) Facet S.

interface
interface Jjavaawt.datatransier. Transforable

java.lang.Object] ! Facer
] primaryOhjec
FoatTransferDataFiavors fava awt datatrans far. DataFaveriy

foBtPrmanyOfect hject +i5s DataFlavarsupported: boclean
FoatTransferData fava. fang Chfect

interface interface
DaDFargetContainaer ParaTransfer

FgatinprortedDre pFiavars DatsFiaverfl
+meveveid

Fropyveid

+iink veid

The DnDTar get Cont ai ner Facet provides the behavior implemented when an object is displayed in
some sort of iconic form, and something is dropped onto it. While custom views may provide more so-
phisticated DnDbehavior, simple actions, like dropping a document onto a printer icon (to print it), can
be handled by thisFacet .

TheDat aTr ansf er Facet of an object providesaway for an object to publish the Typesinto which it
can convert itself. This functionality isused in two main cases: (a) by the DnD subsystem, when the ob-
ject isthe source of adrag operation; and (b) by "clipboard" operations like "cut", "copy" and "paste".

The Folder and Column Facets

An object which is representable as a collection of other objects may have aFol der Facet (Figure4.7)
which enablesit to be displayed in ageneric "folder" Ul element.

Figure4.7. TheFol der and Col um Facet S.

17

Chapter 4. The Standard Facets

interface interface
Facer : 1 [java.lang.Object] ! feature
primaryObject '] target
e PrmaEnyGafec tDa et e rTaEe O afecr
interface

Savaurfl Collection

interface
Javaurfllisr

interface interface

Foldar Column

FgerCaiumns Columnil oo rlEirefas s Cfass

£ EFAL 5 D331 iP5 tenervaid . £ fﬂ&'ﬁ{'ﬂd'ﬁooffé'ﬂ _
Fremovel i iRatal i tenerveid " a.. trRewEditar Property Editar
+Fr LElwaserrzhie boolezn

i OrderngSemantic; boafsan

+is M rabie hoclean
FEFIFrapertyChangel i1 tenervois
FremavefroperiyChang el i fenervoid
FEFIFrapertyChangel i1 tenervois
FremavefroperiyChang el i fenervoid

+Fr LElwaserrzhie boolezn
+iatlEivevafd

+irSarrahia Aoalean
*+oerdscandingsartintiy

+3AFEFr i3l i renarvafd

FrEmGVeL i B03r3 fi rerer via iy
+I3FTPropertyChangel i tenerraid
ErEmareFrapertyCRang el i tenervofs
+I3FTPropertyChangel i tenerraid
ErEmareFrapertyCRang el i tenervofs

A Fol der providesalist of Col unm objects, each of which represents some property of all the elements
of the Fol der . The Col unmms can be used by Ul elements to provide atabular view of the contents of the
Fol der, and to sort the contents of the Fol der based on the property represented by the Col um.

I mportant
The Fol der Facet should provide certain standard columns, exactly equivalent to the "stan-

dard properties’ of Properti ess. For example, we would have methods
get Di spl ayNane(i nt) andget Di spl ayNaneCol um() .

Default Facet Implementations

18

Chapter 4. The Standard Facets

A newly constructed Facet Regi st ry provides default Facet Fact or y implementations bound to the
JavaType of class Qbj ect . These provide instances of the following Facet s
» Descri ption. Displaysageneric icon and selects reasonable defaults for various properties.

* Change. Firesevents based on one of the following techniques:

1. If the primary object implements Coser vabl e, we useit; or --
2. If the primary object publishesthe ChangeCchange event set, we listen for it.

Otherwise, setsthe Change. Aut omat i cal | yUpdat i ngAaut omat i cal | yUpdat i ng property to
f al se and fires events only when Change. fi r eChange() iscaled.

» Actions. Provides accessto al public methods of the object. Also provides an "update views' ac-
tion if the Change. Aut omat i cal | yUpdat i ngAaut omat i cal | yUpdat i ng of the primary object's
Change Facet isf al se; thisaction invokesthe Change. fi r eChange() .

» Properties. Usesstandard Java Bean introspection to present the Bean properties of the object as
alist of Property objects.

* Prot ot ype. Attemptsto use the standard Obj ect . cl one() method on the primary object to create
and return a new instance of the primary object; throws aFact or yExcept i on if this operation
throws a Cl oneNot Suppor t edExcept i on or if some other error happens.

» DnDTar get Cont ai ner . A no-op implementation that never accepts any drop operation.

* Vi ewProt ot ypes. Containsasingle Vi ewthat displays a"property sheet" for the primary object
using itsProperti es Facet .

In addition, Facet Fact or y implementations bound to the JavaType of interface Col | ect i on provide
instances of the following Facet s:

* Fol der. Providesalist of the contents of the primary object, ordering them as presented by what-
ever I terator isprovided by theCol | ection. iterator () method of the primary object. Com-
putes the most general Java superclass and super-interfaces of the contents, and presents each Java
Bean property of these asa Col um.

* Vi ewPr ot ot ypes. Contains one or more Vi ews that display various "icon views' and tabular "de-
tails views" of the primary object using the information provided by its Fol der Facet and the asso-
ciated Col umms.

Facets of Views

A Vi ewisafirst-level object in FavaBeans and can itself be viewed, dragged and dropped, and other-
wise manipulated. These behaviors are, in turn, mediated by the Vi ews standard Facet s.

Summary

19

Chapter 4. The Standard Facets

Theinteraction of Ul elements with domain objectsin FavaBeans is mediated by avariety of Facet ob-
jects. These are, briefly:

» Change. A uniform way to be notified of changes to the state of the primary object.

* Acti ons. Commands the end-user may execute, usually shown on atoolbar or menu.

» Properties andProperty. Information, often editable, about the primary object; usually shown
in aproperty sheet, and used to display the object as anicon.

e Prototype. Behavior that allows an end-user to create a clone of the primary object.
* DnTar get Cont ai ner and DnDTar get . Behavior used to implement responses to DnD operations.

e Fol der and Col unmm. Representation of the primary object as a collection, and columns of informa-
tion permitting atabular view of the itemsin the collection.

* Vi ewPr ot ot ypes. Presentsalist of Vi ew objects which can be cloned (viatheir Pr ot ot ype
Facet s) to construct new views on the original primary object.

A newly constructed Facet Regi st ry contains convenient default Facet Fact or y objects for the fol-

lowing Facet s. Change; Act i ons; Properti es; Prot ot ype; DnDTar get Cont ai ner ; Fol der ; and
Vi ewPr ot ot ypes.

20

Bibliography

[Goldberg89] Smalltalk 80 The Language. Adele Goldberg and David Robson. Addison-Wesley. 1989.
ISBN 0-201-13688-0.

[Krasner88] Journal of Object-Oriented Programming . Aug/Sep 1988. A Cookbook for using the
Model-View-Controller User Interface Paradigmin Smalltalk-80 . Glenn Krasner and Stephen Pope.
29-49. .

[Collins95] Designing Object-Oriented User Interfaces . Benjamin/Cummings. 1995. Dave Collins.
[amazon.com]
[http://www.amazon.com/exec/obidos/A SIN/080535350X/0/qid=971446149/sr=8-1/ref=aps sr b 1 3/104-7333383-6311

[Fowler0O0] Amy Fowler. A Swing Architecture Overview. The Inside Story on JFC Component Design.
2000. [html] [http://java.sun.com/products/jfc/tsc/articles/architecture/] .

[Berry98] OVID: An Overview. Richard Berry, Scott Isensee, John Mullaly, and Dave Roberts.
1997,1998. IBM Corporation. [html] [http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/104] .

[AppleOD] Mac OS 8 and 9 Developer Documentation: OpenDoc. Apple Corporation. [html]
[http://devworl d.apple.com/techpubs/macos8/L egacy/OpenDoc/opendoc.htmi] .

[ObjectSpaceV oyager] ObjectSpace Voyager. ObjectSpace Incorporated. [html]
[http://www.objectspace.com/products/voyager/] .

[MicrosoftCOM] Microsoft COM Technologies - Information and Resour ces for the Component Object
Model-based technologies . Microsoft Corporation. [html] [http://www.microsoft.com/com/] .

[Gamma95] Design Patterns, Elements of Reusable Object-Oriented Software . Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. Addison-Wesley. 1995. ISBN 0-201-63361-2.

21

http://www.amazon.com/exec/obidos/ASIN/080535350X/o/qid=971446149/sr=8-1/ref=aps_sr_b_1_3/104-7333383-6311937
http://java.sun.com/products/jfc/tsc/articles/architecture/
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/104
http://devworld.apple.com/techpubs/macos8/Legacy/OpenDoc/opendoc.html
http://www.objectspace.com/products/voyager/
http://www.microsoft.com/com/

