
The FavaBeans Programmer's Guide
by Ihab Awad



The FavaBeans Programmer's Guide
by Ihab Awad
Copyright © 2000-2001 Regents of the University of Minnesota

"FavaBeans" and the "beans in a pod" device are trademarks of the Regents of the University of Minnesota. All other trademarks are the property
of their respective owners.





Table of Contents

1 Scope and Approach
Introduction 1
Object-Oriented User Interfaces 1
Facilities Provided by FavaBeans 1
Model and View Objects in FavaBeans 1
High-Level Architecture of the Framework 2

2 Views
Introduction 4
Interface View 4
Unresolved Issues 5

3 The Type System
Introduction 6
Class Type 6
Subclasses of class Type 7
Associating Objects with Values: The TypeMetadataRegistry 7
Object Facets 8
Creating Facets: Faceted and the FacetRegistry 9
Summary 10

4 The Standard Facets
Introduction 11
Interface Feature 11
The Properties Facet 11
The Actions Facet 13
The Change Facet 13
The Prototype Facet 14
The ViewPrototypes Facet 15
Drag and Drop 17
The Folder and Column Facets 17
Default Facet Implementations 18
Facets of Views 19
Summary 19

Bibliography



List of Figures

1.1 Fundamental components of FavaBeans. 2
2.1 Interface View. 4
3.1 Class Type. 6
4.1 The Properties Facet. 11
4.2 The Actions Facet. 13
4.3 The Change Facet. 13
4.4 The Prototype Facet. 14
4.5 The ViewPrototypes Facet. 15
4.6 The Drag and Drop (DnD) Facets. 17
4.7 The Folder and Column Facets. 17



Chapter 1. Scope and Approach

Introduction
In this chapter, we describe what FavaBeans is and the scope of the problems we are attempting to ad-
dress by building it.

Object-Oriented User Interfaces
FavaBeans is a framework to help you build an object-oriented user interface (ooui) into your application
using Java Swing. An ooui is a user interface (ui) presenting an end-user model of "objects" which can
carry out certain behaviors and can be directly manipulated by their "views".

The arguments in favor of using an ooui are given in Collins95, and we highly recommend this book to
you as a companion to your use of FavaBeans. Further information about oouis is available from
Berry98.

Facilities Provided by FavaBeans
ooui implementations often make heavy use of drag and drop (dnd) interactors; FavaBeans supports this
by presenting a simplified api that speeds up the process of adding dnd to your application, while still al-
lowing you full access to the underlying Java Swing dnd api should you choose or need to use it.

FavaBeans comes bundled with a rich set of views for browsing collections, analogous to the "icon",
"list" and "details" views commonly found in a modern operating system file browser ui. However, the
FavaBeans collection views are not limited to file browsing, but are available to any part of your appli-
cation. This fact dramatically improves the consistency of the your application's ui, and should help
speed up your development.

FavaBeans includes a system "registry" which allows you to add specific views and other arbitrary ui
functionality for your application objects. However, in the absence of specific knowledge about your ob-
jects, FavaBeans will use standard Java Beans introspection to build up simple, generic Bean property
sheets and collection views. While these may not be suitable for distribution to your end-users, they are
an important development aid, allowing you to concentrate on your application logic while your ui is
still under development, and to develop your ui elements incrementally, using the generic views for tem-
porary navigation through your application objects if need be.

Model and View Objects in FavaBeans
FavaBeans is based on the "Model, View, Controller" design paradigm as introduced in Smalltalk
(Goldberg89 and Krasner88). However, we differ from the Smalltalk pattern in choosing to include the
functionality of a Controller object in the View. This practice is well-established by Collins95, and its
use in Java Swing is documented in Fowler00.

Collins95 suggests a nomenclature whereby the combined View/Controller object is referred to as a
delegate, thereby calling the modified design pattern the "Model, Delegate" approach. We do not adopt
this naming scheme; instead, we describe Model and View objects with the assumption that the View

Chapter 1. Scope and Approach

1



objects take on the role of a Controller as well.

High-Level Architecture of the Framework
The basic components of FavaBeans are shown in Figure 1.1.

Figure 1.1. Fundamental components of FavaBeans.

We will describe these components in more detail in the ensuing chapters but, briefly:

• A domain object (i.e., some part of the application, like an Employee or a
TechSupportCallLog), is required to know nothing about FavaBeans.

• A View is the fundamental visible UI component in FavaBeans. Each View visually represents at
most one domain object; on the other hand, a domain object may be represented by many Views.

• Various portions of the FavaBeans framework create Facets and Features; these act as adapters,
presenting the capabilities of the domain object in a uniform way to other components in FavaBeans.
Each domain object may have many Facets and Features.

Chapter 1. Scope and Approach

2



• Programmers use FavaBeans via the following techniques, listed in ascending order of tight integra-
tion with the framework and need to know the details of the framework interfaces:

• Adding information to the TypeMetadataRegistry accessible from class FavaBeans.

• Creating new Facet and Feature implementations, or extending existing ones, which adapt do-
main objects to the standard elements of the framework, including standard Views (such as "icon
views" of collections and "property sheets"); and --

• Building new, application-specific View implementations.

• The FavaBeans framework associates a domain object with the correct Views, Facets and
Features based on the Types that match the domain object. Types can be extended to implement
various criteria for organizing domain objects, such as:

• The Java class of the domain object, such as myapp.datamodel.TechSupportCallLog.

• Elements of the Java class of the domain object, such as the fact that it publishes the
PropertyChangePpropertyChange event set.

• Other criteria, such as the XML DTD of the document represented by the domain object.

A domain object may match more than one Type. The only restriction we impose is that the Types
of a domain object may not change at run-time.

Chapter 1. Scope and Approach

3



Chapter 2. Views

Introduction
FavaBeans exists to support and facilitate views -- i.e., visual UI components -- which display the infor-
mation in domain objects. In this chapter, we discuss the minimal requirements for a valid FavaBeans
view.

Interface View
A View is the fundamental component which displays some object. The actual interface is [perhaps
somewhat deceptively] simple (Figure 2.1). In addition, we require that a compliant FavaBeans View
implementation be a subclass of Component, thereby allowing it to be embedded in other UI elements.

Important
We may consider relaxing the requirement that a View be a subclass of Component; this would
support frameworks where a view element is part of an abstract "scene graph" and not a di-
rectly paintable AWT/Swing component. We got this idea from Jazz
[http://www.cs.umd.edu/hcil/jazz/], which we will probably be using as an additional "look and
feel" for FavaBeans in the future.

Figure 2.1. Interface View.

The View.ModelMmodel property of a View permits a FavaBeans implementation to use a configured
View repeatedly for viewing multiple objects.

Chapter 2. Views

4

http://www.cs.umd.edu/hcil/jazz/


Unresolved Issues
How will a View interact (if at all) with java.beans.beancontext stuff?

How will a composite View make this fact known? Through its Folder Facet? How does that relate to
the composition inherent in Container and BeanContext?

Chapter 2. Views

5



Chapter 3. The Type System

Introduction
In this chapter, we describe the fundamental system of data "types" that underlies the categorization and
display of objects in a running instance of FavaBeans.

Class Type
A Type object is an analogue of a Java class; it allows us to categorize objects, but provides for more
fine-grained control over this categorization than would be possible were we to categorize objects based
on their Java class alone. See Figure 3.1 for more details; the additional classes shown in this class dia-
gram are discussed below.

Figure 3.1. Class Type.

Class Type implements PoComparable, allowing us to use it in partially ordered data structures.

Chapter 3. The Type System

6



We have made the simplifying design decision that the Type of an object does not change at run-time.
Without this simplification, the state machine for the objects in our framework would be complicated by
having to handle "type changed" events.

Important
We may relax the requirement that the Type of an object not change at run-time later on.

Notably absent from the contract of class Type is any notion of uniqueness of the of the Type of a given
object. On the other hand, any subsystem responsible for returning the Type of an object can and should
return at least the appropriate JavaType (see below); effectively, this is a guarantee that there exists a
minimum of one Type for any Object.

A developer could, if they so wished, define subclasses of Type which recognize information that is not
necessarily representable by an Object; the most obvious example would be a Type associated with a
Java primitive data type such as integer. We neither recommend nor discourage this approach, but
we note that such a Type may not be very useful, as it would be unable to recognize instances of itself
via the Type.isInstance(Object) method.

Subclasses of class Type
The FavaBeans framework includes two pre-defined subclasses of Type; both are depicted in Figure 3.1.

Class JavaType is a simple extension of Type which describes a single Java class or interface. Accord-
ingly, it is constructed with one Class argument.

A DataSourceType represents a type of MIME-typed data stream. It is a bridge to the type system de-
fined by the Java Activation Framework (JAF), and especially to class DataSource. As such, given:

String mimetype = "text/html"; // for example . . .
Type[] supers = new DataSourceType(mimeType).getSupertypes();

the following is always true:

(supers.length == 1) &&
supers[0].equals(new JavaType(javax.activation.DataSource));

Associating Objects with Values: The TypeMetadataRegistry
A TypeMetadataRegistry assigns an object to a value via the best matching Type of the object. It is
one of the main ways whereby FavaBeans requires no intrusion into the domain object model: we can
bind all the view-related information that we might need to domain objects solely by defining the appro-
priate Types and adding information to TypeMetadataRegistrys in the UI.

As a practical and simple example, let's assume that we have the following classes:

Class Person { /* ... */ }
class Employee extends Person { /* ... */ }
class Doctor extends Employee { /* ... */ }

Chapter 3. The Type System

7



and we choose some icons to be used for representing instances of some of these classes, and add them
to some centrally available TypeMetadataRegistry:

Icon personIcon = /* ... */;
Icon employeeIcon = /* ... */;

TypeMetadataRegistry tmr = /* ... */;

tmr.put(new JavaType(Person.class), "icon", personIcon);
tmr.put(new JavaType(Employee.class), "icon", employeeIcon);

A UI element could then use this TypeMetadataRegistry to display the icons for a number of objects:

TypeMetadataRegistry tmr = /* ... */;

Person[] people = new Person[] {
new Person("Pat Okoye"),
new Employee("Joy Albright"),
new Doctor("Peace Freeman"),

};

for (int i = 0; i < people.length; i++) {
Icon theIcon = (Icon)tmr.getForObject(people[i], "icon");
/* display the object using 'theIcon' */

}

and, in this way, use our preferred icons for the Person and Employee objects. Furthermore, the UI
element would automatically represent the Doctor object via the best matching icon which, in our ex-
ample, happens to be that which we associated with class Employee.

Object Facets
A Facet is an object which provides an alternative representation of another object. Examples of a
Facet could be:

• An object that represents an XML file in a filesystem as a parse tree of XML node objects.

• A "persistence" facet of an object, to which the responsibilities for making the object persistent in
some storage medium are delegated.

• An object which represents an Employee object, from the domain model of some application, as a
Drawable with the capability to be drawn on a Canvas.

The FavaBeans Facet objects owe their lineage in part to the following previous work:

• The GoF Decorator design pattern (Gamma95).

• The Facet interface in ObjectSpace Voyager (ObjectSpaceVoyager).

• The definition of "interfaces" by delegation, as used in Microsoft's [D]COM (MicrosoftCOM).

Chapter 3. The Type System

8



Creating Facets: Faceted and the FacetRegistry
An object implements Faceted in order to be tightly integrated into the Facet system. An object re-
turns a Facet of itself of a requested Type via its Faceted.getFacet(Type) method. Any lifecycle
management of Facets is the responsibility of the Faceted object.

More typically -- and more powerfully -- we can create a Facet for an object that is not aware of the
Facet system; we do this with the help of a FacetRegistry. Some "startup" component initializes a
FacetRegistry (typically that available via class FavaBeans) with information about the Types of
objects for which Facets may be created, and some FacetFactory objects to which the
FacetRegistry may delegate the responsibility for actually constructing Facets. A FacetRegistry
is responsible for maintaining a list of already constructed Facets for an object.

A typical interaction with a FacetRegistry starts by adding some FacetFactory objects. Given:

interface WebAccessible { /* ... */ }
interface HtmlAccessible extends WebAccessible { /* ... */ }

interface Vehicle { /* ... */ }

Vehicle theVehicle; /* assuming already exists */
FacetFactory fac0, fac1; /* assuming these already exist */

FacetRegistry theFacets = /* ... */;

We could add:

theFacets.addFactory(new JavaType(Vehicle.class),
new JavaType(WebAccessible.class),
fac0);

theFacets.addFactory(new JavaType(Vehicle.class),
new JavaType(HtmlAccessible.class),
fac1);

We could then use the FacetRegistry to obtain an HtmlAccessible Facet of the Vehicle ob-
ject:

HtmlAccessible h0 = (HtmlAccessible)
theFacets.getFacet(theVehicle, new JavaType(HtmlAccessible.class));

The FacetRegistry would cache this Facet so that:

theFacets.getFacet(theVehicle, new JavaType(HtmlAccessible.class)) == h0;

and would return the same Facet for compatible supertypes of that for which it was originally con-
structed:

theFacets.getFacet(theVehicle, new JavaType(WebAccessible.class)) == h0;

until the FacetRegistry.clearFacets(Object) method is called:

Chapter 3. The Type System

9



theFacets.clearFacets(theVehicle);

after which Facets for this object are created anew:

HtmlAccessible h1 = (HtmlAccessible)
theFacets.getFacet(theVehicle, new JavaType(HtmlAccessible.class));

h1 != h0;

Important
We need to address lifecycle issues for Facet objects. This will apply to all things like views,
etc., and will be generally useful. This is all complicated by the messy strong references in Java
AWT and Swing for event listeners, which may prevent some components from getting garbage
collected correctly. This will need to be addressed at some point.

Summary
Type objects are the analogue of Java classes and behave similarly to Class objects. FavaBeans pro-
vides class TypeMetadataRegistry for binding arbitrary information to instances of a Type.

Facets are an alternative representation of another object, which we refer to as the primary object of the
Facet. FavaBeans provides class FacetRegistry whereby Facets can be constructed for a primary
object based on the Types of the primary object and the desired Facet. The work of actually construct-
ing a Facet is delegated to a FacetFactory.

Chapter 3. The Type System

10



Chapter 4. The Standard Facets

Introduction
In this chapter, we list the standard sub-interfaces of Facet which a FavaBeans implementation should
provide. These are the fundamental manner in which domain objects, developed independently of Fav-
aBeans, are integrated into the framework and given the standard behaviors that elements of the frame-
work are expected to have.

Interface Feature
Before we say any more about Facets, we should first introduce another interface: Feature. A
Feature has a target (see Feature.TargetTtarget) some information about which it provides;
there is not, however, necessarily a unique Feature of a given Feature for a given object. This dis-
tinctino will become clearer as we present examples of actual usage.

The Properties Facet
The Properties of an object (Figure 4.1) provides the basic functionality to display the primary object
in the UI.

Figure 4.1. The Properties Facet.

Chapter 4. The Standard Facets

11



Parts of Properties are very similar in purpose -- and, therefore, deliberatey similar in syntax -- to a
FeatureDescriptor. Specifically the "standard properties" are the information obtained by methods
such as Properties.DisplayNameDdisplayName and Properties.SmallIconSsmallIcon is in-
tended for UI elements to be able to display a minimal iconic representation of the primary object.

The standard properties are also obtainable as full-fledged Property objects. A Property is a that en-
capsulates some sort of information about its target. Methods to obtain these are, for example,
Properties.DisplayNamePropertyDdisplayNameProperty and
Properties.SmallIconPropertySsmallIconProperty.

Finally, zero or more additional Property objects, built depending on the application at hand, are avail-
able via the Properties.AdditionalPropertiesAadditionalProperties method.

Chapter 4. The Standard Facets

12



Important
The number of additional properties is allowed to change at run-time; views that depend on this
fact are expected to listen for PropertyChangePpropertyChange events, with a key of
additionalProperties, from the Properties object they are using.

The Actions Facet
An Actions Facet (Figure 4.2) provides a list of ActionFeature objects representing commands
that the end-user may execute its primary object. These may be plaed in a menu or on a toolbar, or other-
wise presented, at the discretion of relevant UI elements.

Figure 4.2. The Actions Facet.

The Change Facet
The Change Facet of an object (Figure 4.3) publishes the ChangeCchange Bean event set and fires an
event whenever the primary object has changed in a manner that will affect observers.

Figure 4.3. The Change Facet.

Chapter 4. The Standard Facets

13



Other objects (including other Facets of the primary object) may utilize the Change Facet as a way to
isolate themselves from the details whereby an object indicates a state change.

The Change interface is designed to accommodate -- and shield other components from the distinctions
between -- cases where the primary object informs clients of changes to itself and cases where the end-
user must manually trigger an "update" of all views. The
Change.AutomaticallyUpdatingAautomaticallyUpdating property indicates whether the asso-
ciated Change Facet is listening for events from its primary object. If this property is true, then calls
to its Change.fireChange() method should be no-ops. However, if this property is false, each call
to Change.fireChange() will force the broadcast of a ChangeEvent.

The Prototype Facet
The Prototype Facet of an object (Figure 4.4) represents its capability to clone itself. This is an oper-
ation that is invokeable by the end-user, and is intended to be a higher-level construct than that provided
by Object.clone() (but with similar semantics).

Figure 4.4. The Prototype Facet.

Chapter 4. The Standard Facets

14



The ViewPrototypes Facet
Each object has a ViewPrototypes Facet (Figure 4.5) which presents a set of prototypical View ob-
jects.

Figure 4.5. The ViewPrototypes Facet.

Chapter 4. The Standard Facets

15



Given the settting:

Object employee = /* ... */;
FacetRegistry fr = /* ... */;

the canonical manner in which a new View may be created is:

// Get the ViewPrototypes Facet of the domain object

ViewPrototypes fvs = (ViewPrototypes)
fr.getFacet(employee, new JavaType(ViewPrototypes.class));

// Choose one of the Views available

View someProtoView = fvs.getViewPrototypes()[0]; // say

// Get the Prototype Facet of the chosen View, and create
// a new View using its methods

Prototype s = (Prototype)
fr.getFacet(someProtoView, new JavaType(Prototype.class));

View newView = (View)s.clonePrimaryObject();

// Tell the newly created View to display the original
// domain object

newView.setModel(employee);

Chapter 4. The Standard Facets

16



Drag and Drop
There exist two Facets, shown in Figure 4.6, which support Drag and Drop (DnD). They simplify the
work of developers by shielding them from the complexities of the standard Java DnD code
(java.awt.dnd) while still allowing them to expose DnD functionality to UI elements that are
DnD-capable.

Figure 4.6. The Drag and Drop (DnD) Facets.

The DnDTargetContainer Facet provides the behavior implemented when an object is displayed in
some sort of iconic form, and something is dropped onto it. While custom views may provide more so-
phisticated DnDbehavior, simple actions, like dropping a document onto a printer icon (to print it), can
be handled by this Facet.

The DataTransfer Facet of an object provides a way for an object to publish the Types into which it
can convert itself. This functionality is used in two main cases: (a) by the DnD subsystem, when the ob-
ject is the source of a drag operation; and (b) by "clipboard" operations like "cut", "copy" and "paste".

The Folder and Column Facets
An object which is representable as a collection of other objects may have a Folder Facet (Figure 4.7)
which enables it to be displayed in a generic "folder" UI element.

Figure 4.7. The Folder and Column Facets.

Chapter 4. The Standard Facets

17



A Folder provides a list of Column objects, each of which represents some property of all the elements
of the Folder. The Columns can be used by UI elements to provide a tabular view of the contents of the
Folder, and to sort the contents of the Folder based on the property represented by the Column.

Important
The FolderFacet should provide certain standard columns, exactly equivalent to the "stan-
dard properties" of Propertiess. For example, we would have methods
getDisplayName(int) and getDisplayNameColumn().

Default Facet Implementations

Chapter 4. The Standard Facets

18



A newly constructed FacetRegistry provides default FacetFactory implementations bound to the
JavaType of class Object. These provide instances of the following Facets:

• Description. Displays a generic icon and selects reasonable defaults for various properties.

• Change. Fires events based on one of the following techniques:

1. If the primary object implements Observable, we use it; or --

2. If the primary object publishes the ChangeCchange event set, we listen for it.

Otherwise, sets the Change.AutomaticallyUpdatingAautomaticallyUpdating property to
false and fires events only when Change.fireChange() is called.

• Actions. Provides access to all public methods of the object. Also provides an "update views" ac-
tion if the Change.AutomaticallyUpdatingAautomaticallyUpdating of the primary object's
Change Facet is false; this action invokes the Change.fireChange().

• Properties. Uses standard Java Bean introspection to present the Bean properties of the object as
a list of Property objects.

• Prototype. Attempts to use the standard Object.clone() method on the primary object to create
and return a new instance of the primary object; throws a FactoryException if this operation
throws a CloneNotSupportedException or if some other error happens.

• DnDTargetContainer. A no-op implementation that never accepts any drop operation.

• ViewPrototypes. Contains a single View that displays a "property sheet" for the primary object
using its Properties Facet.

In addition, FacetFactory implementations bound to the JavaType of interface Collection provide
instances of the following Facets:

• Folder. Provides a list of the contents of the primary object, ordering them as presented by what-
ever Iterator is provided by the Collection.iterator() method of the primary object. Com-
putes the most general Java superclass and super-interfaces of the contents, and presents each Java
Bean property of these as a Column.

• ViewPrototypes. Contains one or more Views that display various "icon views" and tabular "de-
tails views" of the primary object using the information provided by its Folder Facet and the asso-
ciated Columns.

Facets of Views
A View is a first-level object in FavaBeans and can itself be viewed, dragged and dropped, and other-
wise manipulated. These behaviors are, in turn, mediated by the View's standard Facets.

Summary

Chapter 4. The Standard Facets

19



The interaction of UI elements with domain objects in FavaBeans is mediated by a variety of Facet ob-
jects. These are, briefly:

• Change. A uniform way to be notified of changes to the state of the primary object.

• Actions. Commands the end-user may execute, usually shown on a toolbar or menu.

• Properties and Property. Information, often editable, about the primary object; usually shown
in a property sheet, and used to display the object as an icon.

• Prototype. Behavior that allows an end-user to create a clone of the primary object.

• DnTargetContainer and DnDTarget. Behavior used to implement responses to DnD operations.

• Folder and Column. Representation of the primary object as a collection, and columns of informa-
tion permitting a tabular view of the items in the collection.

• ViewPrototypes. Presents a list of View objects which can be cloned (via their Prototype
Facets) to construct new views on the original primary object.

A newly constructed FacetRegistry contains convenient default FacetFactory objects for the fol-
lowing Facets: Change; Actions; Properties; Prototype; DnDTargetContainer; Folder; and
ViewPrototypes.

Chapter 4. The Standard Facets

20



Bibliography
[Goldberg89] Smalltalk 80 The Language. Adele Goldberg and David Robson. Addison-Wesley. 1989.
ISBN 0-201-13688-0.

[Krasner88] Journal of Object-Oriented Programming . Aug/Sep 1988. A Cookbook for using the
Model-View-Controller User Interface Paradigm in Smalltalk-80 . Glenn Krasner and Stephen Pope.
29-49. .

[Collins95] Designing Object-Oriented User Interfaces . Benjamin/Cummings. 1995. Dave Collins.
[amazon.com]
[http://www.amazon.com/exec/obidos/ASIN/080535350X/o/qid=971446149/sr=8-1/ref=aps_sr_b_1_3/104-7333383-6311937]
.

[Fowler00] Amy Fowler. A Swing Architecture Overview. The Inside Story on JFC Component Design.
2000. [html] [http://java.sun.com/products/jfc/tsc/articles/architecture/] .

[Berry98] OVID: An Overview. Richard Berry, Scott Isensee, John Mullaly, and Dave Roberts.
1997,1998. IBM Corporation. [html] [http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/104] .

[AppleOD] Mac OS 8 and 9 Developer Documentation: OpenDoc. Apple Corporation. [html]
[http://devworld.apple.com/techpubs/macos8/Legacy/OpenDoc/opendoc.html] .

[ObjectSpaceVoyager] ObjectSpace Voyager. ObjectSpace Incorporated. [html]
[http://www.objectspace.com/products/voyager/] .

[MicrosoftCOM] Microsoft COM Technologies - Information and Resources for the Component Object
Model-based technologies . Microsoft Corporation. [html] [http://www.microsoft.com/com/] .

[Gamma95] Design Patterns, Elements of Reusable Object-Oriented Software . Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. Addison-Wesley. 1995. ISBN 0-201-63361-2.

21

http://www.amazon.com/exec/obidos/ASIN/080535350X/o/qid=971446149/sr=8-1/ref=aps_sr_b_1_3/104-7333383-6311937
http://java.sun.com/products/jfc/tsc/articles/architecture/
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/104
http://devworld.apple.com/techpubs/macos8/Legacy/OpenDoc/opendoc.html
http://www.objectspace.com/products/voyager/
http://www.microsoft.com/com/

